Algebra II Auch

Objectives

- Use properties to simplify logarithmic expressions.
- Translate between logarithms in any base.

Product Property of Logarithms			
For any positive numbers <i>m</i> , <i>n</i> , and $b (b \neq 1)$			
Words	Numbers	Algebra	
The logarithm of a product is equal to the sum of the logarithms of its factors.	$log_{3} 1000 = log_{3} (10 \cdot 100)$ $= log_{3} 10 + log_{3} 100$	$\log_b mn = \log_b m + \log_b n$	

Example 1

Express as a single logarithm. Simplify if possible.

 $\log_4 2 + \log_4 32$

Try it!

Express as a single logarithm. Simplify if possible.

a)
$$\log_5 625 + \log_5 25$$
 b) $\log_{\frac{1}{3}} 27 + \log_{\frac{1}{3}} \frac{1}{9}$

Quotient Property of Logarithms			
For any positive numbers <i>m</i> , <i>n</i> , and $b (b \neq 1)$			
Words	Numbers	Algebra	
The logarithm of a quotient is the logarithm of the dividendt minus the logarithm of the divisor.	$\log_5\left(\frac{16}{2}\right) = \log_5 16 - \log_5 2$	$\log_b \frac{m}{n} = \log_b m - \log_b n$	

Express as a single logarithm. Simplify if possible.

 $\log_2 32 - \log_2 4$

Try it!

Express as a single logarithm. Simplify if possible.

a) $\log_7 49 - \log_7 7$

Power Property of Logarithms			
For any positive numbers <i>m</i> , <i>n</i> , and <i>b</i> $(b \neq 1)$			
Words	Numbers	Algebra	
The logarithm of a power is the product of the exponent and the logarithm of the base.	log10 $log(10 \cdot 10 \cdot 10)$ log10 + log10 + log10 3log10	$\log_b a^p = p \log_b a$	

Express as a single logarithm. Simplify if possible.

 $\log_3 81^2$

Try it!

Express as a single logarithm. Simplify if possible.

a) $\log 10^4$

b)
$$\log_5 25^2$$

c)
$$\log_2\left(\frac{1}{2}\right)^5$$

Inverse Properties of Logarithms and Exponents		
For any base <i>b</i> such that $b > 0$ and $b \neq 1$,		
Algebra	Example	
$\log_b b^x = x$	$\log_b b^x = x$	
$b^{\log_b x} = x$	$10^{\log_{10} 2} = 2$	

Express as a single logarithm. Simplify if possible.

a)	$\log_{8} 8^{3x+1}$	b)	$\log_{5} 125$	c)	$2^{\log_2 27}$
,	- 08 -	- /	- 0	.,	

Try it!

Express as a single logarithm. Simplify if possible.

a) $\log 10^{0.9}$

b) $2^{\log_2(8x)}$

Change of Base Formula		
For $a > 0$ and $a \neq 1$, and any base b such that $b > 0$ and $b \neq 1$,		
Algebra	Example	
$\log_b x = \frac{\log_a x}{\log_a b}$	$\log_4 8 = \frac{\log_2 8}{\log_2 4}$	

Evaluate $\log_4 8$

a) Method 1 Change to base 10

b) Method 1 Change to base 2, because both 4 and 8 are powers of 2.

Try it!

a) Evaluate $\log_9 27$

b) Evaluate $\log_8 16$

Homework 7.4 pg 516 #1-18 all