Objectives

- Use The Factor Theorem to determine factors of a polynomial
- Factor the sum and differences of two cubes

Factor Theorem	
Theorem	Example
For any polynomial $P(x)$, $(x-a)$ is a factor of $P(x)$ if and only if $P(a)=0$.	Because $P(1) = 1^2 - 1 = 0$, $(x-1)$
	Is a factor of $P(x) = x^2 - 1$.

Example 1 Determining Whether a Linear Binomial is a Factor

Determine whether the given binomial is a factor of the polynomial P(x).

a)
$$(x-3)$$
; $P(x) = x^2 + 2x - 3$

b)
$$(x+4)$$
; $P(x) = 2x^4 + 8x^3 + 2x + 8$

Try it Determine whether the given binomial is a factor of the polynomial P(x).

a)
$$(x+2); P(x) = 4x^2 - 2x + 5$$

b)
$$(3x-6)$$
; $P(x) = 3x^4 - 6x^3 + 6x^2 + 3x - 30$

Example 2 Factoring by Grouping..

Factor.
$$x^3 + 3x^2 - 4x - 12$$

Try it! Factor each expression.

a)
$$x^3 - 2x^2 - 9x + 18$$

b)
$$2x^3 + x^2 + 8x + 4$$

Factoring the Sum and the Difference of Two Cubes	
Method	Algebra
Sum of two cubes	$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$
Difference of two cubes	$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$

Example 3 Factoring the Sum and Difference of Two Cubes

Factor each expression.

a)
$$5x^4 + 40x$$

b)
$$8y^3 - 27$$

Try it! Factor each expression.

a)
$$8 + z^6$$

b)
$$2x^5 - 16x^2$$