Algebra II Auch

Objectives

• Use long division and synthetic division to divide polynomials

Vocabulary

• Synthetic Division

Using Long Division to Divide Polynomials
Divide by using long division.

 $(4x^2 + 3x^3 + 10) \div (x - 2)$

Step 1 Write the dividend in standard form, including terms with coefficient of 0.

Step 2 Write division in the same way as you would when dividing numbers.

Step 3 Divide

Step 4 Write the final answer

Try it	Divide	by	us
--------	--------	----	----

Divide by using long division.

a)	$(15x^2 + 8x - 12) \div (3x + 1)$
Step 1	Write the dividend in standard form, including terms with coefficient of 0.

Step 2 Write division in the same way as you would when dividing numbers.

Step 3 Divide

Step 4 Write the final answer

	Divide by using long division.
a)	$\left(x^2 + 5x - 28\right) \div \left(x - 3\right)$
Step 1	Write the dividend in standard form, including terms with coefficient of 0.

Step 2 Write division in the same way as you would when dividing numbers.

Step 3 Divide

Synthetic Division Method				
Divide $(2x^2 + 7x + 9) \div (x + 2)$ by using synthetic division				
Words	Numbers			
Step 1: Write the coefficients of the dividend, 2, 7, and 9.	-2	2	7	9
In the upper left corner, write the value of a for the divisor				
(<i>x</i> - <i>a</i>). So $a = -2$. Copy the first coefficient in the dividend		2		
Below the horizontal bar.				
Step 2: Multiply the first coefficient by the divisor, and write	-2	2	7	9
the product under the next coefficient. Add the numbers in			-4	
the new column.		2	3	
Repeat step 2 until the additions have been completed in	-2	2	7	9
all columns. Draw a box around the last sum.			-4	-6
		2	3	3
Step 3: The quotient is represented by the numbers below	-		2	3
The horizontal bar. The boxed number is the <i>remainder</i> .	$= 2x + 3 + \frac{1}{x + 2}$			
The others are the coefficients of the polynomial quotient,				. –
In order of decreasing degree.				

Example 2 Using Synthetic Division to Divide by a Linear Binomial Divide by using synthetic division.

a)
$$\left(4x^2 - 12x + 9\right) \div \left(x + \frac{1}{2}\right)$$

b)
$$(x^4 - 2x^3 + 3x + 1) \div (x - 3)$$

Try it! Divide by using synthetic division.

a)
$$(6x^2 - 5x - 6) \div (x + 3)$$

b)
$$(x^2 - 3x - 18) \div (x - 6)$$

Example 3 Remainder Theorem

Use synthetic substitution to evaluate the polynomial for the given value.

a)
$$P(x) = x^3 - 4x^2 + 3x - 5$$
 for $x = 4$

Use synthetic substitution to evaluate the polynomial for the given value.

b)
$$P(x) = 4x^4 + 2x^3 + 3x + 5$$
 for $x = -\frac{1}{2}$

Try it! Use synthetic substitution to evaluate the polynomial for the given value.

a)
$$P(x) = x^3 + 3x^2 + 4$$
 for $x = -3$

b)
$$P(x) = 5x^2 + 9x + 3$$
 for $x = \frac{1}{5}$