Algebra II Auch

Section 5.5 Date:

Objectives

• Solve quadratic equations with complex roots.

• Define and use imaginary and complex numbers.

Vocabulary

Imaginary unit – Imaginary number – Complex number – Real Part – Imaginary part – Complex conjugate -

Imaginary Numbers		
Words	Numbers	Algebra
An imaginary number is the square root of a	$\sqrt{-1} = i$	If b is a positive real
negative number.		number,
Imaginary numbers ban be written in the form bi,	$\sqrt{-2} = \sqrt{-1}\sqrt{2} = i\sqrt{2}$	then $\sqrt{-b} = i\sqrt{b}$
where b is a real number and I is the imaginary	$\sqrt{-4} = \sqrt{-1}\sqrt{4} = 2i$	and $\sqrt{-b^2} = bi$.
unit.	()	()2
The square of an imaginary number is the original	$\left(\sqrt{-1}\right)^2 = i^2 = -1$	$\left(\sqrt{-b}\right)^2 = -b.$
negative number.		

Example 1

Simplifying Square Roots of Negative Numbers

Express each number in terms of i..

a)
$$3\sqrt{-16}$$

 $3\sqrt{(16)(-1)}$ Factor out -1.
 $3\sqrt{(16)}\sqrt{-1}$ Product Property
 $3\cdot 4\sqrt{-1}$ Simplify
 $12\sqrt{-1}$ Multiply
 $12i$ Express in terms of i .

b)
$$-\sqrt{-75}$$

Try it! a)
$$\sqrt{-12}$$

b)
$$2\sqrt{-36}$$

c)
$$-\frac{1}{3}\sqrt{-63}$$

Example 2

Solving a Quadratic Equation with Imaginary Solutions

Solve each equation.

a)
$$x^2 = -81$$

b)
$$3x^2 + 75 = 0$$

Try it!

Solve each equation.

a)
$$x^2 = -36$$

b)
$$x^2 + 48 = 0$$

c)
$$9x^2 + 25 = 0$$

Example 3 Finding Complex Zeros of Quadratic Functions

Find the zeros of each function.

a)
$$f(x) = x^2 - 2x + 5$$

$$x^2 - 2x + 5 = 0$$

Set equal to zero

$$x^2 - 2x + ? = -5 + ?$$

Rewrite

$$x^2 - 2x + 1 = -5 + 1$$

Add $\left(\frac{b}{2}\right)^2$

$$(x-1)^2 = -4$$

Factor

$$x - 1 = \pm \sqrt{-4}$$
$$x = 1 \pm 2i$$

Take square roots.

b)
$$g(x) = x^2 + 10x + 35$$

Try it! Finding Complex Zeros of Quadratic Functions

Find the zeros of each function.

a)
$$f(x) = x^2 + 4x + 13$$

b)
$$g(x) = x^2 - 8x + 18$$

Example 4 Finding Complex Conjugates

Find each complex conjugate.

- a) 2i-15 -15+2i Write as a+bi-15-2i Find a-bi
- b) -4i

Try it! Finding Complex Conjugates

Find each complex conjugate.

- a) 9-i
- b) $i + \sqrt{3}$
- c) -8i