Algebra II Auch

Objectives

- Solve quadratic equations by completing the square.
- Write quadratic equations in vertex form.

Vocabulary

Completing the square.

Example 1

Solving Equations by Using the Square Root Property Solve each equation.

a)
$$3x^2 - 4 = 68$$

b)
$$x^2 - 10x + 25 = 27$$

Try it!

Solving Equations by Using the Square Root Property Solve each equation.

a)
$$4x^2 - 20 = 5$$

b)
$$x^2 + 8x + 16 = 49$$

Section 5.4 Date:

Completing the Square		
Words	Numbers	Algebra
To complete the square of	$x^{2} + 6x + ?$	$x^{2} + bx + ?$
$x^2 + bx$, add $\left(\frac{b}{2}\right)^2$	$x^2 + 6x + \left(\frac{6}{2}\right)^2$	$x^2 + bx + \left(\frac{b}{2}\right)^2$
	$x^2 + 6x + 9$	$\begin{pmatrix} b \end{pmatrix}^2$
	$(x-3)^2$	$\begin{pmatrix} x-\overline{2} \end{pmatrix}$

Example 2 Completing the Square Complete the Square for each expression. Write the resulting expression as a binomial squared.

a) $x^2 - 2x + ?$ Find $\left(\frac{b}{2}\right)^2 = \left(\frac{-2}{2}\right)^2 = (-1)^2 = 1$ Add $x^2 - 2x + 1$

Factor $(x-1)^2$

Check: Find the square of the binomial $(x-1)^2 = (x-1)(x-1) = x^2 - 2x + 1$

b)

 $x^{2} + 5x + ?$ Find $\left(\frac{b}{2}\right)^{2} = \left(\frac{5}{2}\right)^{2} = \frac{25}{4}$ Add $x^{2} + 5x + \frac{25}{4}$

Factor
$$\left(x + \frac{5}{2}\right)^2$$

Check: Find the square of the binomial

$$\left(x+\frac{5}{2}\right)^2 = \left(x+\frac{5}{2}\right)\left(x+\frac{5}{2}\right) = x^2 + 5x + \frac{25}{4}$$

Try it!

Complete the Square for each expression. Write the resulting expression as a binomial squared.

a)
$$x^2 + 4x + ?$$

Find $\left(\frac{b}{2}\right)^2 =$

Add

Factor

Check: Find the square of the binomial

b) $x^2 - 4x + ?$

c) $x^2 + 3x + ?$

Solving Quadratic Equations $ax^2 + bx + c$ by Completing the Square

- 1. Collect the variable terms on one side of the equation and constants on the other.
- 2. As needed, divide both sides by *a* to make the coefficient of the term x^2 term 1.
- 3. Complete the square by adding $\left(\frac{b}{2}\right)^2$ to both sides of the equation.
- 4. Factor the variable expression as a perfect square.
- 5. Take the square root of both sides of the equation.
- 6. Solve for the values of the variable.

Example 3 Solving a Quadratic Equation by Completing the Square.

 $x^2 = 27 - 6x$ a) $x^2 + 6x = 27$ Collect variable terms on one side. $x^{2} + 6x + [] = 27 + []$ Set up to complete the square. $x^{2} + 6x + \left(\frac{6}{2}\right)^{2} = 27 + \left(\frac{6}{2}\right)^{2}$ Add $\left(\frac{b}{2}\right)^{2}$ to both sides. $x^2 + 6x + 9 = 27 + 9$ Simplify. $(x+3)^2 = 36$ Factor $x + 3 = \pm \sqrt{36}$ Take the square root of both sides $x + 3 = \pm 6$ Simplify. x + 3 = 6 or x + 3 = -6Solve for *x*. x = 3 or x = -9

b)
$$2x^2 + 8x = 12$$

Try it! Solving each equation by completing the square.

a) $x^2 - 2 = 9x$

b) $3x^2 - 24x = 27$

Example 4 Writing a Quadratic Function in Vertex Form.

a)
$$f(x) = x^2 + 10x - 13$$

b)
$$g(x) = 2x^2 - 8x + 3$$

Try it! a)
$$f(x) = x^2 + 24x + 145$$

b)
$$g(x) = 5x^2 - 50x + 128$$